
Transfer Learning: Shallow and Deep Neural Models

Diego Uribe, Enrique Cuan, Elisa Urquizo

Tecnológico Nacional de México,
Instituto Tecnológico de La Laguna,

Departamento de Sistemas y Computación,
Mexico

{duribea, ecuand, eurquizob}@lalaguna.tecnm.mx

Abstract. Since developing general-purpose large language models to handle
a variety of tasks can be expensive for many businesses, transfer learning
plays a crucial role in many natural language tasks nowadays. The pre-trained
and fine-tuning framework for transferring and tuning the generic knowledge
produced by a large language model (LLM) is a common ground for many
natural language tasks. In this work, we focus our attention on how much tuning
of the semantic representations (i.e. generic knowledge) obtained from BERT
is required to perform downstream language tasks. We analyze the impact of
some deep learning models, such as recurrent neural networks, on the fine-tuning
process for a downstream classification task. To consider similarities and
differences between the deep learning models and the corresponding optimization
of the classification task, a dataset of four different categories of short answer
responses is used in our empirical experimentation. In this way, we enrich
the comparison of the tuning required to optimize the semantic representations
obtained from a pre-trained BERT model.

Keywords: Transfer learning, pre-trained language model, BERT.

1 Introduction

In this paper we explore whether there is a meaningful contrast in the use of
different deep learning models when transferring the generic knowledge produced
by a pre-trained language model. In the context of natural language processing,
learning textual representations, the generic knowledge to be transferred, plays a crucial
role in multiple language tasks like question answering or classification or natural
language generation. These textual representations are learned from unsupervised
learning methods and transferred to a supervised learning task. Said in another way,
transfer learning occurs when generic representations have been learned to make
a subsequent learning task easier [5]. And it is precisely that the pre-trained and
fine-tuned framework has emerged as a powerful technique to facilitate transfer
learning. Building a pre-trained language model relies on self-supervised learning
(SSL), a type of unsupervised learning.

By making use of large amounts of unlabeled text data, SSL learns generic
representations useful across many linguistic tasks [2]. The most crucial aspect in the

35

ISSN 1870-4069

Research in Computing Science 153(11), 2024pp. 35–47; rec. 2024-06-11; acc. 2024-08-17



development of a pre-trained model is the definition of the unsupervised learning tasks
such as masked language modeling (MLM) [18], next sentence prediction (NSP) [12],
sentence order prediction (SOP) [9], etc. These pre-training tasks make the difference
between the large number of pre-trained models available to be used across a range of
downstream language tasks [22]. In this work we focus our attention on the bidirectional
transformer encoder known as BERT: Bidirectional Encoder Representations from
Transformers [3], a pre-trained language model based on a bidirectional transformer
encoder which is characterized by a bidirectional self-attention mechanism to produce
contextual embeddings. More precisely, among the wide range of available variants of
BERT, in this work we make use of the compact BERT model [20, 19].

Since a large language model such as the original BERT has a high computational
cost, the compact BERT model was created with the purpose of not only reducing the
computational cost but also using the same self-supervised learning paradigm in its
development. Indeed, building a compact model proved to be possible by applying the
standard pre-training and fine-tuning process but a different training strategy, based on
a compression technique known as knowledge distillation, was implemented.

Briefly, this distillation technique consists of a student-teacher training method
where the teacher transfers knowledge to the student through its predictions for
unlabeled training examples. A deep description is given in section 3. As we initially
said, we explore in this work whether there is a meaningful contrast in the use of
different deep learning models when taking the generic knowledge produced by a
pre-trained language model. In other words, we explore the impact of taking and
further tuning the linguistic representations obtained from the compact BERT model
via deep learning models such as simple recurrent networks (SimpleRNN), long short
term memory networks (LSTM) and Bi-directional networks.

In fact, we perform a downstream task as classification by implementing a classifier
learning model with each variant of recurrent neural networks for tuning the obtained
representations to the peculiarities of a downstream task as short answer responses
classification. The collection of short answer responses was created with the intention
of automated assessment of written responses. Each instance in the collection denotes
a short answer corresponding to a particular story of a specific domain where the range
of the score is three: 0, 1, or 2. In other words, the fine-tuning process performs a
downstream task as multi-class classification where a short answer is assigned into one
of the multiple rubrics of the responses. Thus, the primary contributions of our work
are summarized as follows:

– Our work provides insights about the impact of deep transfer learning with recurrent
neural networks. The transfer learning for each variant of recurrent neural networks
is described to consider similarities and differences between them.

– We conduct an empirical evaluation on the use of recurrent neural networks
for transfer learning. The fine tuning process is implemented on a downstream
classification task with a deep learning model defined in terms of the semantic
representations produced by the compact BERT model.

– To enrich the experimentation, we try two different configurations for each
variant of RNNs.

36

Diego Uribe, Enrique Cuan, Elisa Urquizo

Research in Computing Science 153(11), 2024 ISSN 1870-4069



2 Related Work

In this section we briefly describe some interesting works about transfer learning and
pre-trained language models. Developing a pre-trained language model to produce
general-purpose knowledge leads to developing modern techniques for transfer learning
in NLP. Azunre has written a fully comprehensive guide about transfer learning
techniques for the customization of pre-trained language models.

How to use transfer learning to reproduce state-of-the-art results for downstream
tasks, especially when limited resources, such as the availability of label data, are a
common scenario in many language understanding tasks [1]. Another important work
about the relevance of transfer learning is displayed by Raffel et al. [14]. Given that
transferring general knowledge produced by a pre-trained language model is nowadays
a common practice in many language tasks, transfer learning emerges as an important
research topic. The purpose of this work is to propose a text-to-text framework for the
systematic study of the multiple affairs that transfer learning entails:

– Pre-training objectives,

– Unlabeled datasets,

– Benchmarks,

– Fine-tuning methods.

In other words, this work proposes a unified approach to compare the effectiveness
of various transfer learning objectives and fine-tuning methods, as well the use of
unlabeled datasets. In summary, the purpose is to provide insights about transfer
learning from a systematic framework to determine where the field stands.

An excellent paper about the impact of pretrained language models in NLP is
the work developed by Qiu et al. [13]. The major contribution of this work is a
comprehensive and exhaustive review of pretrained models for NLP. For a better
description of the pretrained models, the authors built a taxonomy which categorize
existing pretrained models from four different perspectives:

– Representation Type: Contextual and non-contextual models for downstream tasks.

– Architectures: The network structure and its components such as Transformer
encoder and decoder.

– Task Types: Type of pre-training tasks.

– Extensions: Design of pretrained models for diverse scenarios.

The problem of adapting the general language knowledge to downstream tasks is
also contemplated from the perspective of transfer learning and fine-tuning strategies.
There have been numerous works on improving BERT such as RoBERTa [11]. This
encoder is more robust than BERT, and is trained using much more training data.

ALBERT [9] is another work that lowers the memory consumption and increases the
training speed of BERT. These variants have also been fine-tuned for various NLP tasks.
Lin et al. used self-attention to extract interpretable sentence embeddings [10]. They use

37

Transfer Learning: Shallow and Deep Neural Models

Research in Computing Science 153(11), 2024ISSN 1870-4069



a 2-D matrix to represent the embedding, with each row of the matrix attending on a
different part of the sentence. In this way, different aspects of the sentence are extracted
into multiple-vector representation. Experimental results over 3 different tasks show
that the model outperforms other sentence embedding models by a significant margin.

3 BERT: The Pre-trained Language Model

Here we explain the pre-trained language model used in our research work, a variant of
BERT: the compact BERT model. In fact, a fair description of knowledge distillation,
the pre-training task used in the development of this small language model, is given in
this section. But we first briefly take a look at BERT and its self-attention mechanism
that has impacted the world of NLP.

3.1 BERT: Bidirectional Encoder Representations from Transformers

In its broadest sense, the transformer consists of an encoder-decoder architecture.
However, BERT is a transformer model that includes only the encoder component.
Unlike other popular embedding models (e.g. word2vec) that produce static
embeddings irrespective of the context, BERT generates dynamic embeddings based
on the context so multiple embeddings are produced for the multiple contexts in which
a particular word can be used [3]. In order to generate context-based embeddings, the
attention mechanism of the transformer plays a crucial role in the encoding process.

Self-attention, a special type of attention, emerged as a more efficient alternative
to overcome the limitations of the RNNs: capturing long-term dependencies is one of
the major challenges with RNNs [21]. Self-attention takes a holistic approach to the
analysis of the linguistic elements: instead of considering only the previous elements
in the input, self-attention compares each element with all the sequence elements in
order to understand how words relate to each other over long distances. In fact, the
output of a particular element yi depends on the comparisons between the input xi and
the preceding and following elements xj . A formal description of the output values
(vector y) is based on three concepts:

– Query: The current focus of attention.

– Key: Preceding and following input to be compared with the current
focus of attention.

– Value: Computation of the output for the current focus of attention.

In this way, each element of the input vector x is represented in terms of these
concepts and the corresponding weights:

qi = WQxi ; ki = WKxi ; vi = WVxi . (1)

Then, the output yi corresponding to each input element xi is:

yi =

n∑
j=i

αijvj , (2)

38

Diego Uribe, Enrique Cuan, Elisa Urquizo

Research in Computing Science 153(11), 2024 ISSN 1870-4069



where the alpha weights represent the proportional relevance of each input to the current
focus of attention:

αij =
exp(scoreij)

n∑
k=1

exp(scoreik)

, (3)

scoreij = qikj . (4)

Thus the comparison of each element with the rest of the sequence elements take
place in parallel. This means simultaneous access to all sequence elements and therefore
simultaneous computation of the relevance of each sequence element. In this way, the
step-by-step processing of intermediate recurrent connections is eliminated.

3.2 Compact Model

The basic idea of the Compact BERT model is to start with an initial model trained
on MLM (the student) to eventually improve its performance by knowledge distillation
from a large language model (the teacher) [20]. This model consists of L = 4 encoder
layers, a hidden size of H = 512, and A = 8 attention heads representing a total of 28M
parameters1. Since this small language model is based on knowledge distillation, a fair
description of this pre-training task is given next. Building a compact model revolves
around knowledge distillation: the standard technique for model compression [7]. Since
LLMs have a high computational cost, research on the development of a small model
was guided by not only reducing the computational cost but also by using the same
self-supervised learning paradigm in its development.

Indeed, building a compact model proved to be possible by applying the standard
pre-training and fine-tuning process but a different training strategy, based on a
compression technique known as knowledge distillation, was implemented. Basically,
this distillation technique consists of a student-teacher training method where the
teacher, a robust LM, transfers knowledge to the student, a small LM to be developed,
through its predictions for unlabeled training examples. Fig. 1 shows the knowledge
distillation process incorporated in the development and implementation of a compact
BERT model [20]. The training resources demanded by the process are the following:

– Teacher: the teacher is a LLM which can be either a BERT-base or a BERT-large
pre-trained language model.

– Student: the student is the compact model to be built. Whereas the total number
of parameters is 110 million in BERT-base, the initial size for a tiny model is
4 million parameters.

Label data (DL): a set of N training examples (x1, y1), . . ., (xN , yN ), where xi

is an input and yi is a label. Unlabeled training data (DT ): a set of M input examples
x

′

1, ..., x
′

M obtained from a distribution not necessarily identical to the distribution of

1 bert/bert en uncased L-4 H-512 A-8

39

Transfer Learning: Shallow and Deep Neural Models

Research in Computing Science 153(11), 2024ISSN 1870-4069



Fig. 1. Knowledge Distillation process. This figure corresponds to [20].

the labeled set. This dataset is used by the teacher for the transfer of knowledge to the
student by making available its predictions for instances x

′

m.

Unlabeled language model data (DLM ): it is an unannotated text collection for
unsupervised learning of text representation by using MLM as training method
and the kernel of the compact model is defined for a sequence of three training
operations: Pre-training on DLM : pre-training of the compact model with MLM as
training method. Distillation on DT : transfer knowledge to the student. Once the student
is prepared, the teacher transfer its knowledge to the student via its predictions to
strengthen the compact model. The estimation of the cross-entropy loss between teacher
and student predictions is then used to update the student model.

Fine-tuning on DL: this operation is an optional step. The compact model is
fine-tuned on end-task labeled data. In other words, the similarity between the
distribution of the transfer and labeled datasets is perceived in this step. This compact
model is compared with two contemporary works that also use distillation for transfer
knowledge. Both works initialize the student with a BERT model truncated, that is, the
bottom layers of a 12-layer BERT model are used for the initialization of the student.
However, the distillation process is different.

Whereas Patient Knowledge Distillation performs task-specific distillation [17],
DistillBert makes use of a more expensive LM teacher as distillation is performed on
general-domain data [15].

40

Diego Uribe, Enrique Cuan, Elisa Urquizo

Research in Computing Science 153(11), 2024 ISSN 1870-4069



4 Experimental Evaluation

The experimentation conducted in this work is the description of deep transfer learning
for a particular text-processing task with recurrent neural networks architectures. So,
we first explain the fine-tuning process of the pre-trained Compact model previously
mentioned to perform a downstream task as sequence classification. As a fundamental
part of the tuning process, the downstream network architectures implemented are also
detailed. Then, the dataset characteristics are exposed and the results of each recurrent
neural architectures are exhibited.

4.1 Fine-tuning

The process to make use of the generalizations produced by the pretrained language
models is known as fine-tuning. These generalizations are helpful to build a sort of
pipeline applications to cope with particular NLP tasks such as sequence classification
or named entity tagging. In our classification experiments, we adopt two strategies to the
downstream task: the use of the embeddings obtained from the pre-trained model as the
input to a classic neural network, and a more refined optimization of such embeddings
via deep recurrent neural networks.

So, how to obtain the embeddings from the compact BERT model? The BERT
models return a map with three important keys: pooled output, sequence output and
encoder outputs. For the neural network architectures implemented in our tuning
process, the first two keys are of interest to us:

– pooled output: represents each input sequence as a whole so the embedding denotes
the entire sequence. The shape is [batch size, H].

– sequence output: represents each input token in the sequence so in this case we have
a contextual embedding for every token. The shape is [batch size, seq length, H].

In the case of pooled output, Fig. 2 shows how there is an additional vector
symbolized by the [CLS] token which is prepended to the input sequences. This
additional vector [CLS] captures the entire sequence so it is provided to a classic neural
network classifier that makes the category decision. By using a labeled dataset, the
sequence classification task entails to learn a set of weights (W ) in order to map the
output vector (YCLS) to a set of categories:

y = softmax(WYCLS). (5)

On the other hand, the fine-tuning process with deep recurrent neural networks
requires the use of sequence output. Recurrent neural networks represent the temporal
nature of language as each element of a sequence (each token in Fig. 2) is processed
at a time [4].

The key point in this model is the computation of the hidden layer as the last input
element denotes the entire sequence. To activate the current hidden layer is necessary
the value obtained in the previous hidden layer corresponding to a preceding point in
time. Equation (6) expresses the computation of the hidden layer h where x denotes

41

Transfer Learning: Shallow and Deep Neural Models

Research in Computing Science 153(11), 2024ISSN 1870-4069



Fig. 2. BERT’s output: pooled output and sequence output.

the sequence (i.e. input) and g an activation function. W denotes the weight matrix
corresponding to the input xt whereas U denotes the weight matrix corresponding to
the hidden layer of the previous timestep ht−1. In this way, this connectionist model is
concerned with the context corresponding to each element of the sequence:

ht = f(Uht−1 +Wxt). (6)

4.2 Data

The dataset used in this experimentation is part of an ambitious research project
denominated the Automated Student Assessment Prize (ASAP) [6] for automated
grading of student-written responses sponsored by The William and Flora Hewlett
Foundation. The purpose is to explore new forms of testing and grading methods and to
reduce the cost of human graders by automating the student assessment. Three stages
set up the ASAP project:

– Phase 1: analysis of essays: long-form response.

– Phase 2: analysis of short answers: short-form response.

– Phase 3: analysis of charts/graphs: symbolic mathematical/logical reasoning.

The focus of our attention is the collection of short-answers corresponding to the
phase 2. Each instance in the collection denotes a short answer corresponding to a
reading passage from a broad range of disciplines: From English Language Arts to
Science. More specifically, the dataset is divided into 10 collections, where each one is
described by a particular reading passage corresponding to a particular discipline and
where the grade is defined in terms of levels of quality or categories: 0 (not proficient),
1 (partially proficient), or 2 (proficient).

42

Diego Uribe, Enrique Cuan, Elisa Urquizo

Research in Computing Science 153(11), 2024 ISSN 1870-4069



The average length of each answer is approximately 50 words and most training
sets contain around 1,800 responses that have been randomly selected from a sample
of approximately 3,000. From the 10 training collections available in the dataset, we
select four training sets where three levels of quality define the grade of each answer.
In other words, the fine-tuning process implemented in our experimentation performs a
downstream task as multi-class classification where a short answer is assigned into one
of the multiple rubrics of the responses.

4.3 Results

As we previously said, we adopt ,in our classification experiments, two strategies
to the downstream task: the use of the embeddings as the input to a classic neural
network, and a more refined optimization of such embeddings via deep recurrent neural
networks. Thus, the downstream network architectures implemented are:

– Classic: three dense layers are used to adjust the pre-trained embeddings obtained
from pooled output. The first and second layers contain 64 and 32 hidden units
respectively, and since the number of hidden units of the compact BERT model is
512, and our experimentation performs a downstream three-class classification, the
number of parameters to be adjusted is 35,011.

– SimpleRNN: as traditional neural networks are unable to represent the temporal
nature of language [4], the embeddings are transferred step by step. A simple dense
layer is used to adjust the pre-trained embeddings obtained from sequence output.
For example, since the number of hidden units of the compact BERT model is 512,
a SimpleRNN layer with dimensionality of 50 (number of units), and a downstream
three-class classification task, the number of parameters to be adjusted is 28,303.

– LSTM: as SimpleRNN cannot keep track of long-term dependencies, we try LSTM
networks to include the consideration of distant constituents [8]. A simple dense layer
is also used to adjust the pre-trained embeddings obtained from sequence output. In
this case, as the number of hidden units of the compact BERT model is 512, a LSTM
layer with dimensionality of 50 (number of units), and a downstream three-class
classification task, the number of parameters to be adjusted is 112,753.

– Bidirectional: as in many cases we need information from the context to the right of
the current token, we try Bidirectional networks to include the consideration of the
constituents from the start to the end of the input sequence and vice versa [16]. A
simple dense layer is also used to adjust the pre-trained embeddings obtained from
sequence output. In this case, as the number of hidden units of the compact BERT
model is 512, a Bidirectional network having LSTM layers with dimensionality of
50 (number of units), and a downstream three-class classification task, the number of
parameters to be adjusted is 225,503.

As the size of the short-answers collections is small, the performance evaluation
of the pre-trained models was conducted by the cross-validation method to use all the
responses corresponding to a particular domain.

43

Transfer Learning: Shallow and Deep Neural Models

Research in Computing Science 153(11), 2024ISSN 1870-4069



Table 1. ASAP-RNNs-50-units.

Architecture Dataset 3 Dataset 7 Dataset 8 Dataset 9

Classic 0.71 0.66 0.64 0.72

SimpleRNN 0.79 0.79 0.78 0.83

LSTM 0.84 0.84 0.82 0.86

Bidirectional 0.84 0.84 0.82 0.86

Table 2. ASAP-RNNs-100-units.

Architecture Dataset 3 Dataset 7 Dataset 8 Dataset 9

Classic 0.71 0.66 0.64 0.72

SimpleRNN 0.78 0.76 0.73 0.80

LSTM 0.84 0.84 0.81 0.87

Bidirectional 0.84 0.84 0.80 0.84

We train our downstream learning models with an Adam optimizer with a learning
rate of 0.001, three-fold cross-validation and 25 epochs. We also apply dropout with ρ =
0.2 across layers of the downstream networks to prevent overfitting. Tables 1 and 2 show
the results of the transfer of knowledge, obtained from the compact BERT model to deep
recurrent neural networks. Table 1 shows the results for deep network architectures with
a dimensionality of 50 units, whereas the results with a dimensionality of 100 units are
exhibited in Table 2. The results are expressed in terms of the F1 score corresponding to
each network architecture and each domain. For example, the second row of the Table
1 shows a F1 score of 0.79 obtained with a SimpleRNN architecture for dataset 3. A
deep analysis of the results is carried out in the next section.

5 Discussion

A starting point for our discussion section is the definition of the baseline as a reference
point for the obtained results. As it has been described in the data section, the data
collection used in our experimentation is part of a competition for automated grading of
student-written responses (ASAP) [6]. Unfortunately, the information available on the
competition portal only mentions the winners of the competition but no methodology
implemented or obtained results are provided.

However, taking into account that our purpose is to perceive the impact of deep
transfer learning with recurrent neural networks, we define the classic neural network
model as the baseline model. For the sake of clarity, Fig. 3 and Fig. 4 show a graphic
perspective of the obtained results corresponding to the Tables 1 and 2 respectively.

Recurrent Neural Networks. Based on these figures, it is possible to observe
whether there is a meaningful contrast in the use of different recurrent neural networks
when transferring the generic knowledge produced by a pre-trained language model
such as the compact BERT model.

44

Diego Uribe, Enrique Cuan, Elisa Urquizo

Research in Computing Science 153(11), 2024 ISSN 1870-4069



Fig. 3. ASAP-RNNs-50-units.

Fig. 4. ASAP-RNNs-100-units.

First of all, we see how the baseline performance denoted by a classic neural
network model has been surpassed by the recurrent neural networks. A significant
increase in the performance can be observed for all datasets. Now, the use of diverse
recurrent neural networks exhibits important points to be noticed. First, we see how
the transfer of the embeddings produced by the Compact model has been worth of
implementing with recurrent neural networks. For all the observed datasets in Fig. 3 or
Table 1, the F1 score obtained by the use of the SimpleRNN architecture is higher than
the score obtained by the classic architecture. An average increase of 11 points in the
F1 score is observed.

45

Transfer Learning: Shallow and Deep Neural Models

Research in Computing Science 153(11), 2024ISSN 1870-4069



Fig. 3 or Table 1 also show how the highest performance has been obtained with the
use of the LSTM architecture. For all the observed datasets, the transfer of knowledge
with this recurrent architecture proved to be the best option. On the other hand, we
see how the transfer of the embeddings has not been worth of implementing with a
Bidirectional architecture such as BiLSTM (see Fig. 3 and Fig. 4). At its best score, this
Bidirectional architecture achieves the same performance as the one obtained with the
LSTM architecture. We attribute this result to the size of the texts: a short-answer text
does not seem to demand information from the context to the right of the current token
being analyzed.

Dimensionality. We have presented our results in two figures corresponding to the
implementation of diverse recurrent neural networks with two dimensions: 50 and 100
units. We configured in this way taking into account that the average length of each
answer is approximately 50 words. Regardless of the dataset observed, the F1 score
obtained with an architecture of 100 units is equal or lower than the one obtained with
an architecture of 50 units. Thus, the transfer of knowledge with a recurrent neural
architecture of 50 units proved to be the best option.

A side effect of dimensionality is the increase in the number of parameters to
be adjusted.For example, the number of parameters to be trained for a SimpleRNN
architecture of 50 units is 28,303, whereas the number of parameters to be trained
for a SimpleRNN architecture of 100 units is 61,603. And of course, given that the
complexity of the LSTM and BiLSTM architectures is greater than the complexity of a
SimpleRNN architecture, the number of parameters to be considered is much greater.

6 Conclusions

In this paper, we have analyzed the impact of deep transfer learning with RNNs.
To consider similarities and differences between diverse RNNs, the transfer learning
for each variant is described in terms of the fine-tuning process implemented on a
downstream classification task. Our experimentation based on the classification of
short-answer texts, provides empirical evidence of how the tuning of the embeddings
obtained from a compact BERT model is worth of implementing with RNNs. Compared
with a classic neural network, a SimpleRNN architecture improves the results, whereas
the best results were obtained with the LSTM architecture.

References

1. Azunre, P.: Transfer learning for natural language processing. Manning Publisher (2021)
2. Balestriero, R., Ibrahim, M., Sobal, V., Morcos, A., Shekhar, S., Goldstein, T., Bordes, F.,

Bardes, A., Mialon, G., Tian, Y., Schwarzschild, A., Wilson, A. G., Geiping, J., Garrido,
Q., Fernandez, P., Bar, A., Pirsiavash, H., LeCun, Y., Goldblum, M.: A cookbook of
self-supervised learning (2023) doi: 10.48550/ARXIV.2304.12210

3. Devlin, J., Chang, M. W., Lee, K., Toutanova, K.: BERT: Pre-training of deep bidirectional
transformers for language understanding. In: Proceedings of the Conference of the North
American Chapter of the Association for Computational Linguistics: Human Language
Technologies, vol. 1, pp. 4171–4186 (2019)

46

Diego Uribe, Enrique Cuan, Elisa Urquizo

Research in Computing Science 153(11), 2024 ISSN 1870-4069



4. Elman, J. L.: Finding structure in time. Cognitive Science, vol. 14, no. 2, pp. 179–211 (1990)
doi: 10.1016/0364-0213(90)90002-e

5. Goodfellow, I., Bengio, Y., Courville A.: Deep learning. The MIT Press (2016)
6. Hamner, B., Morgan, J., Lynnvandev., Shermis, M., Vander-Ark, T.: The Hewlett foundation:

Automated essay scoring (2012) www.kaggle.com/competitions/asap-aes
7. Hinton, G., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network (2015) doi: 10

.48550/arXiv.1503.02531
8. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Computation, vol. 9, no. 8,

pp. 1735–1780 (1997) doi: 10.1162/neco.1997.9.8.1735
9. Lan, Z., Chen, M., Goodman, S., Gimpel, K., Sharma, P., Soricut, R.: ALBERT: A lite

BERT for self-supervised learning of language representations. In: International Conference
on Learning Representations, pp. 1–17 (2020)

10. Lin, Z., Feng, M., Nogueira-dos-Santos, C., Yu, M., Xiang, B., Zhou, B., Bengio, Y.: A
structured self-attentive sentence embedding (2017) doi: 10.48550/arXiv.1703.03130

11. Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., Levy, O., Lewis, M., Zettle-Moyer,
L., Stoyanov, V.: Roberta: A robustly optimized BERT pretraining approach (2019) doi: 10
.48550/arXiv.1907.11692

12. Logeswaran, L., Lee, H.: An efficient framework for learning sentence representations (2018)
doi: 10.48550/ARXIV.1803.02893

13. Qiu, X., Sun, T., Xu, Y., Shao, Y., Dai, N., Huang, X.: Pre-trained models for natural language
processing: A survey (2020) doi: 10.48550/arXiv.2003.08271

14. Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S., Matena, M., Zhou, Y., Li, W., Liu,
P. J.: Exploring the limits of transfer learning with a unified text-to-text transformer. Journal
of Machine Learning Research. vol. 21, no. 1, pp. 1–67 (2020)

15. Sanh, V., Debut, L., Chaumond, J., Wolf, T.: Smaller, faster, cheaper, lighter: Introducing
DistilBERT, a distilled version of BERT (2019) doi: 10.48550/arXiv.1910.01108

16. Schuster, M., Paliwal, K.: Bidirectional recurrent neural networks. IEEE Transactions on
Signal Processing, vol. 45, no. 11, pp. 2673–2681 (1997) doi: 10.1109/78.650093

17. Sun, S., Cheng, Y., Gan, Z., Liu, J.: Patient knowledge distillation for BERT model
compression (2019) doi 10.48550/arXiv.1908.09355

18. Taylor, W. L.: Cloze procedure: A new tool for measuring readability. Journalism Quarterly,
vol. 30, no. 4, pp. 415–433 (1953) doi: 10.1177/107769905303000401

19. TensorFlow: BERT (2020) tfhub.dev/tensorflow/small bert/bert en uncased L-4 H-512 A
-8/2

20. Turc, J., Chang, M. W., Lee, K., Toutanova, K.: Well-read students learn better: On the
importance of pre-training compact models. In: Proceedings of the International Conference
on Learning Representations, pp. 1–13 (2019) doi: 10.48550/arXiv.1908.08962

21. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L.,
Polosukhin, I.: Attention is all you need. In: Proceedings of the 31st International Conference
on Neural Information Processing Systems, pp. 1–11 (2017)

22. Wei, C., Xie, S. M., Ma, T.: Why do pretrained language models help in downstream tasks?
An analysis of head and prompt tuning (2021) doi: 10.48550/ARXIV.2106.09226

47

Transfer Learning: Shallow and Deep Neural Models

Research in Computing Science 153(11), 2024ISSN 1870-4069


